Skip to content

集合类型

动态数组 Vector

动态数组只能存储相同类型的元素,如果你想存储不同类型的元素,可以使用之前讲过的枚举类型或者特征对象。

创建动态数组

rust
let v: Vec<i32> = Vec::new();

// 如果预先知道要存储的元素个数,可以使用 Vec::with_capacity(capacity) 创建动态数组,这样可以避免因为插入大量新数据导致频繁的内存分配和拷贝,提升性能

let v = vec![1, 2, 3];
// 给予初始化值

添加

rust
let mut v = Vec::new();
v.push(1);

跟结构体一样,Vector 类型在超出作用域范围后,会被自动删除

从 Vector 中读取元素

  • 通过下标索引访问。
  • 使用 get 方法
rust
let v = vec![1, 2, 3, 4, 5];

let third: &i32 = &v[2];
println!("第三个元素是 {}", third);

match v.get(2) {
    Some(third) => println!("第三个元素是 {third}"),
    None => println!("去你的第三个元素,根本没有!"),
}

下标索引与 .get 的区别

rust
let v = vec![1, 2, 3, 4, 5];

let does_not_exist = &v[100];
let does_not_exist = v.get(100);

运行以上代码,&v[100] 的访问方式会导致程序无情报错退出,因为发生了数组越界访问。 但是 v.get 就不会,它在内部做了处理,有值的时候返回 Some(T),无值的时候返回 None,因此 v.get 的使用方式非常安全。

同时借用多个数组元素

数组的大小是可变的,当旧数组的大小不够用时,Rust 会重新分配一块更大的内存空间,然后把旧数组拷贝过来。这种情况下,之前的引用显然会指向一块无效的内存,这非常 rusty —— 对用户进行严格的教育。

迭代遍历 Vector 中的元素

rust
let mut v = vec![1, 2, 3];
for i in &mut v {
    *i += 10
}

存储不同类型的元素

枚举

rust
#[derive(Debug)]
enum IpAddr {
    V4(String),
    V6(String)
}
fn main() {
    let v = vec![
        IpAddr::V4("127.0.0.1".to_string()),
        IpAddr::V6("::1".to_string())
    ];

    for ip in v {
        show_addr(ip)
    }
}

fn show_addr(ip: IpAddr) {
    println!("{:?}",ip);
}

特征对象:

rust
trait IpAddr {
    fn display(&self);
}

struct V4(String);
impl IpAddr for V4 {
    fn display(&self) {
        println!("ipv4: {:?}",self.0)
    }
}
struct V6(String);
impl IpAddr for V6 {
    fn display(&self) {
        println!("ipv6: {:?}",self.0)
    }
}

fn main() {
    let v: Vec<Box<dyn IpAddr>> = vec![
        Box::new(V4("127.0.0.1".to_string())),
        Box::new(V6("::1".to_string())),
    ];

    for ip in v {
        ip.display();
    }
}

比枚举实现要稍微复杂一些,我们为 V4 和 V6 都实现了特征 IpAddr,然后将它俩的实例用 Box::new 包裹后,存在了数组 v 中,需要注意的是,这里必须手动地指定类型:Vec<Box<dyn IpAddr>>,表示数组 v 存储的是特征 IpAddr 的对象,这样就实现了在数组中存储不同的类型。

在实际使用场景中,特征对象数组要比枚举数组常见很多,主要原因在于特征对象非常灵活,而编译器对枚举的限制较多,且无法动态增加类型。

Vector 的排序

在 rust 里,实现了两种排序算法,分别为稳定的排序 sort 和 sort_by,以及非稳定排序 sort_unstable 和 sort_unstable_by。

当然,这个所谓的 非稳定 并不是指排序算法本身不稳定,而是指在排序过程中对相等元素的处理方式。在 稳定 排序算法里,对相等的元素,不会对其进行重新排序。而在 不稳定 的算法里则不保证这点。

总体而言,非稳定 排序的算法的速度会优于 稳定 排序算法,同时,稳定 排序还会额外分配原数组一半的空间。

整数数组的排序

rust
fn main() {
    let mut vec = vec![1, 5, 10, 2, 15];
    vec.sort_unstable();
    assert_eq!(vec, vec![1, 2, 5, 10, 15]);
}

浮点数数组的排序

rust
fn main() {
    let mut vec = vec![1.0, 5.6, 10.3, 2.0, 15f32];
    vec.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
    assert_eq!(vec, vec![1.0, 2.0, 5.6, 10.3, 15f32]);
}

对结构体数组进行排序

rust
#[derive(Debug)]
struct Person {
    name: String,
    age: u32,
}

impl Person {
    fn new(name: String, age: u32) -> Person {
        Person { name, age }
    }
}

fn main() {
    let mut people = vec![
        Person::new("Zoe".to_string(), 25),
        Person::new("Al".to_string(), 60),
        Person::new("John".to_string(), 1),
    ];
    // 定义一个按照年龄倒序排序的对比函数
    people.sort_unstable_by(|a, b| b.age.cmp(&a.age));

    println!("{:?}", people);
}