所有权
在计算机语言不断演变过程中,出现了三种流派:
- 垃圾回收机制(GC),在程序运行时不断寻找不再使用的内存,典型代表:Java、Go
- 手动管理内存的分配和释放, 在程序中,通过函数调用的方式来申请和释放内存,典型代表:C++
- 通过所有权来管理内存,编译器在编译时会根据一系列规则进行检查
其中 Rust 选择了第三种,最妙的是,这种检查只发生在编译期,因此对于程序运行期,不会有任何性能上的损失。
所有权原则
- Rust 中每一个值都被一个变量所拥有,该变量被称为值的所有者
- 一个值同时只能被一个变量所拥有,或者说一个值只能拥有一个所有者
- 当所有者(变量)离开作用域范围时,这个值将被丢弃(drop)
变量作用域
{ // s 在这里无效,它尚未声明
let s = "hello"; // 从此处起,s 是有效的
// 使用 s
} // 此作用域已结束,s不再有效
简单介绍 String 类型
- 字符串字面值是不可变的,因为被硬编码到程序代码中
- 并非所有字符串的值都能在编写代码时得知
:: 是一种调用操作符,这里表示调用 String 中的 from 方法,因为 String 存储在堆上是动态的,你可以这样修改它:
let mut s = String::from("hello");
s.push_str(", world!"); // push_str() 在字符串后追加字面值
println!("{}", s); // 将打印 `hello, world!`
变量绑定背后的数据交互
let s1 = String::from("hello");
let s2 = s1;
拷贝 String 和存储在堆上的字节数组 如果该语句是拷贝所有数据(深拷贝),那么无论是 String 本身还是底层的堆上数据,都会被全部拷贝,这对于性能而言会造成非常大的影响
只拷贝 String 本身 这样的拷贝非常快,因为在 64 位机器上就拷贝了 8 字节的指针、8 字节的长度、8 字节的容量,总计 24 字节,但是带来了新的问题,还记得我们之前提到的所有权规则吧?其中有一条就是:一个值只允许有一个所有者,而现在这个值(堆上的真实字符串数据)有了两个所有者:s1 和 s2。
Rust 中每一个值都被一个变量所拥有,该变量被称为值的所有者
一个值同时只能被一个变量所拥有,或者说一个值只能拥有一个所有者
当所有者(变量)离开作用域范围时,这个值将被丢弃(drop)
克隆(深拷贝)
Rust 永远也不会自动创建数据的 “深拷贝”。
Rust 有一个叫做 Copy 的特征,可以用在类似整型这样在栈中存储的类型。如果一个类型拥有 Copy 特征,一个旧的变量在被赋值给其他变量后仍然可用。
- 所有整数类型,比如 u32
- 布尔类型,bool,它的值是 true 和 false
- 所有浮点数类型,比如 f64
- 字符类型,char
- 元组,当且仅当其包含的类型也都是 Copy 的时候。比如,(i32, i32) 是 Copy 的,但 (i32, String) 就不是
- 不可变引用 &T ,例如转移所有权中的最后一个例子,但是注意: 可变引用 &mut T 是不可以 Copy 的
函数传值与返回
引用与借用
Rust 通过 借用(Borrowing) 这个概念来达成上述的目的,获取变量的引用,称之为借用(borrowing)。正如现实生活中,如果一个人拥有某样东西,你可以从他那里借来,当使用完毕后,也必须要物归原主。
fn main() {
let x = 5;
let y = &x;
assert_eq!(5, x);
assert_eq!(5, *y);
}
变量 x 存放了一个 i32 值 5。y 是 x 的一个引用。可以断言 x 等于 5。然而,如果希望对 y 的值做出断言,必须使用 *y 来解出引用所指向的值(也就是解引用)。一旦解引用了 y,就可以访问 y 所指向的整型值并可以与 5 做比较。
不允许比较整数与引用,因为它们是不同的类型。必须使用解引用运算符解出引用所指向的值。
不可变引用
fn main() {
let s1 = String::from("hello");
let len = calculate_length(&s1);
println!("The length of '{}' is {}.", s1, len);
}
fn calculate_length(s: &String) -> usize {
s.len()
}
可变引用
fn main() {
let mut s = String::from("hello");
change(&mut s);
}
fn change(some_string: &mut String) {
some_string.push_str(", world");
}
同一作用域,特定数据只能有一个可变引用;
引用的作用域 s 从创建开始,一直持续到它最后一次使用的地方,这个跟变量的作用域有所不同,变量的作用域从创建持续到某一个花括号 }
借用规则总结
- 同一时刻,你只能拥有要么一个可变引用, 要么任意多个不可变引用
- 引用必须总是有效的
fn main() {
let s = String::from("hello"); // s 进入作用域
takes_ownership(s); // s 的值移动到函数里 ...
// ... 所以到这里不再有效
let x = 5; // x 进入作用域
makes_copy(x); // x 应该移动函数里,
// 但 i32 是 Copy 的,所以在后面可继续使用 x
} // 这里, x 先移出了作用域,然后是 s。但因为 s 的值已被移走,
// 所以不会有特殊操作
fn takes_ownership(some_string: String) { // some_string 进入作用域
println!("{}", some_string);
} // 这里,some_string 移出作用域并调用 `drop` 方法。占用的内存被释放
fn makes_copy(some_integer: i32) { // some_integer 进入作用域
println!("{}", some_integer);
} // 这里,some_integer 移出作用域。不会有特殊操作
fn main() {
let s1 = gives_ownership(); // gives_ownership 将返回值
// 移给 s1
let s2 = String::from("hello"); // s2 进入作用域
let s3 = takes_and_gives_back(s2); // s2 被移动到
// takes_and_gives_back 中,
// 它也将返回值移给 s3
} // 这里, s3 移出作用域并被丢弃。s2 也移出作用域,但已被移走,
// 所以什么也不会发生。s1 移出作用域并被丢弃
fn gives_ownership() -> String { // gives_ownership 将返回值移动给
// 调用它的函数
let some_string = String::from("hello"); // some_string 进入作用域.
some_string // 返回 some_string 并移出给调用的函数
}
// takes_and_gives_back 将传入字符串并返回该值
fn takes_and_gives_back(a_string: String) -> String { // a_string 进入作用域
a_string // 返回 a_string 并移出给调用的函数
}