Skip to content

泛型和特征

泛型和特征是 Rust 中最最重要的抽象类型,也是你在学习 Rust 路上的拦路虎,但是挑战往往与乐趣并存,一旦学会,在后面学习 Rust 的路上,你将一往无前。

泛型 Generics

简单说就是和 ts 中的 any 很像,但是在 rust 中,泛型是静态类型的。

这意味着在使用泛型时,编译器会进行类型检查,并确保类型的一致性。这提供了更强的类型安全性和编译时错误检测。

rust
// 定义一个泛型函数
fn print<T>(value: T) {
    println!("Value: {:?}", value);
}

// 调用泛型函数
print(10);                  // 打印:Value: 10
print("Hello, Rust!");      // 打印:Value: "Hello, Rust!"
print(vec![1, 2, 3]);       // 打印:Value: [1, 2, 3]

详解

T 就是泛型参数,实际上在 Rust 中,泛型参数的名称你可以任意起,但是出于惯例,我们都用 T ( T 是 type 的首字母)来作为首选,这个名称越短越好,除非需要表达含义,否则一个字母是最完美的。

rust
fn largest<T>(list: &[T]) -> T {

我们可以这样理解这个函数定义:函数 largest 有泛型类型 T,它有个参数 list,其类型是元素为 T 的数组切片,最后,该函数返回值的类型也是 T。

具体的泛型函数实现如下:

rust
fn add<T: std::ops::Add<Output = T>>(a:T, b:T) -> T {
    a + b
}


fn main() {
    println!("add i8: {}", add(2i8, 3i8));
    println!("add i32: {}", add(20, 30));
    println!("add f64: {}", add(1.23, 1.23));
}

不是所有 T 类型都能进行相加操作,因此我们需要用 std::ops::Add<Output = T> 对 T 进行限制;

结构体中使用泛型

rust
struct Point<T> {
    x: T,
    y: T,
}

fn main() {
    let integer = Point { x: 5, y: 10 };
    let float = Point { x: 1.0, y: 4.0 };
}

这里有两点需要特别的注意:

  • 提前声明,跟泛型函数定义类似,首先我们在使用泛型参数之前必需要进行声明 Point<T>,接着就可以在结构体的字段类型中使用 T 来替代具体的类型
  • x 和 y 是相同的类型

如果想让 x 和 y 既能类型相同,又能类型不同,就需要使用不同的泛型参数:

rust
struct Point<T,U> {
    x: T,
    y: U,
}
fn main() {
    let p = Point{x: 1, y :1.1};
}

枚举中使用泛型

rust
enum Option<T> {
    Some(T),
    None,
}
rust
enum Result<T, E> {
    Ok(T),
    Err(E),
}

这个枚举和 Option 一样,主要用于函数返回值,与 Option 用于值的存在与否不同,Result 关注的主要是值的正确性。

方法中使用泛型

rust
struct Point<T> {
    x: T,
    y: T,
}

impl<T> Point<T> {
    fn x(&self) -> &T {
        &self.x
    }
}

fn main() {
    let p = Point { x: 5, y: 10 };

    println!("p.x = {}", p.x());
}

使用泛型参数前,依然需要提前声明:impl<T>,只有提前声明了,我们才能在 Point<T>中使用它,这样 Rust 就知道 Point 的尖括号中的类型是泛型而不是具体类型。需要注意的是,这里的 Point<T> 不再是泛型声明,而是一个完整的结构体类型,因为我们定义的结构体就是 Point<T> 而不再是 Point。

除了结构体中的泛型参数,我们还能在该结构体的方法中定义额外的泛型参数,就跟泛型函数一样:

rust
struct Point<T, U> {
    x: T,
    y: U,
}

impl<T, U> Point<T, U> {
    fn mixup<V, W>(self, other: Point<V, W>) -> Point<T, W> {
        Point {
            x: self.x,
            y: other.y,
        }
    }
}

fn main() {
    let p1 = Point { x: 5, y: 10.4 };
    let p2 = Point { x: "Hello", y: 'c'};

    let p3 = p1.mixup(p2);

    println!("p3.x = {}, p3.y = {}", p3.x, p3.y);
}

这个例子中,T,U 是定义在结构体 Point 上的泛型参数,V,W 是单独定义在方法 mixup 上的泛型参数,它们并不冲突,说白了,你可以理解为,一个是结构体泛型,一个是函数泛型。

对于 Point<T> 类型,你不仅能定义基于 T 的方法,还能针对特定的具体类型,进行方法定义:

rust
impl Point<f32> {
    fn distance_from_origin(&self) -> f32 {
        (self.x.powi(2) + self.y.powi(2)).sqrt()
    }
}

const 泛型

针对类型实现的泛型,所有的泛型都是为了抽象不同的类型

[i32; 2] 和 [i32; 3] 是不同的数组类型

rust
fn display_array<T: std::fmt::Debug>(arr: &[T]) {
    println!("{:?}", arr);
}
// fn display_array(arr: &[i32]) {
//     println!("{:?}", arr);
// }
fn main() {
    let arr: [i32; 3] = [1, 2, 3];
    display_array(&arr);

    let arr: [i32;2] = [1,2];
    display_array(&arr);
}

要注意的是需要对 T 加一个限制 std::fmt::Debug,该限制表明 T 可以用在 println!("{:?}", arr) 中,因为 {:?} 形式的格式化输出需要 arr 实现该特征。

好在,现在咱们有了 const 泛型,也就是针对值的泛型,正好可以用于处理数组长度的问题:

rust
fn display_array<T: std::fmt::Debug, const N: usize>(arr: [T; N]) {
    println!("{:?}", arr);
}
fn main() {
    let arr: [i32; 3] = [1, 2, 3];
    display_array(arr);

    let arr: [i32; 2] = [1, 2];
    display_array(arr);
}

如上所示,我们定义了一个类型为 [T; N] 的数组,其中 T 是一个基于类型的泛型参数,这个和之前讲的泛型没有区别,而重点在于 N 这个泛型参数,它是一个基于值的泛型参数!因为它用来替代的是数组的长度。

N 就是 const 泛型,定义的语法是 const N: usize,表示 const 泛型 N ,它基于的值类型是 usize。

在泛型参数之前,Rust 完全不适合复杂矩阵的运算,自从有了 const 泛型,一切即将改变。

泛型的性能

在 Rust 中泛型是零成本的抽象,意味着你在使用泛型时,完全不用担心性能上的问题。 但是!因为Rust 通过在编译时进行泛型代码的 单态化(monomorphization)来保证效率。 举个例子:

rust
let integer = Some(5);
let float = Some(5.0);

会被编译成单态化:

rust
enum Option_i32 {
    Some(i32),
    None,
}

enum Option_f64 {
    Some(f64),
    None,
}

fn main() {
    let integer = Option_i32::Some(5);
    let float = Option_f64::Some(5.0);
}

特征 Trait 建议看两遍

特征跟接口很类似,特征定义了一组可以被共享的行为,只要实现了特征,你就能使用这组行为。

定义特征

如果不同的类型具有相同的行为,那么我们就可以定义一个特征,然后为这些类型实现该特征。定义特征是把一些方法组合在一起,目的是定义一个实现某些目标所必需的行为的集合。

例如,我们现在有文章 Post 和微博 Weibo 两种内容载体,而我们想对相应的内容进行总结,也就是无论是文章内容,还是微博内容,都可以在某个时间点进行总结,那么总结这个行为就是共享的,因此可以用特征来定义:

rust
pub trait Summary {
    fn summarize(&self) -> String;
}

这里使用 trait 关键字来声明一个特征,Summary 是特征名。在大括号中定义了该特征的所有方法,在这个例子中是: fn summarize(&self) -> String

特征只定义行为看起来是什么样的,而不定义行为具体是怎么样的。因此,我们只定义特征方法的签名,而不进行实现,此时方法签名结尾是 ;,而不是一个 {}。

接下来,每一个实现这个特征的类型都需要具体实现该特征的相应方法,编译器也会确保任何实现 Summary 特征的类型都拥有与这个签名的定义完全一致的 summarize 方法。

为类型实现特征

trait 定义了某个特定类型拥有可能与其他类型共享的功能。可以通过 trait 以一种抽象的方式定义共享的行为。可以使用 trait bounds 指定泛型是任何拥有特定行为的类型。

在 Rust 中,trait 是一种用于定义方法集合的抽象。它类似于接口(interface)的概念,但比接口更强大。通过 trait,你可以定义一组方法,然后在不同的类型上实现这些方法,从而为这些类型赋予共享的行为。

可以将 trait 看作是一组方法的规范或合同,要求实现该 trait 的类型必须提供这些方法的具体实现。通过实现 trait,类型可以表达自己具备某种行为或能力。

其实有点像js中的给原型链挂载一个函数;主要是实现不同类型之间共享行为的效果。

rust
// 定义一个特征
pub trait Summary {
    fn summarize(&self) -> String;
}

pub struct Post {
    pub title: String, // 标题
    pub author: String, // 作者
    pub content: String, // 内容
}


impl Summary for Post {
    fn summarize(&self) -> String {
        format!("文章{}, 作者是{}", self.title, self.author)
    }
}

pub struct Weibo {
    pub username: String,
    pub content: String
}

impl Summary for Weibo {
    fn summarize(&self) -> String {
        format!("{}发表了微博{}", self.username, self.content)
    }
}

实现特征的语法与为结构体、枚举实现方法很像:impl Summary for Post,读作“为 Post 类型实现 Summary 特征”,然后在 impl 的花括号中实现该特征的具体方法。

接下来就可以在这个类型上调用特征的方法:

rust

fn main() {
    let post = Post{title: "Rust语言简介".to_string(),author: "Sunface".to_string(), content: "Rust棒极了!".to_string()};
    let weibo = Weibo{username: "sunface".to_string(),content: "好像微博没Tweet好用".to_string()};

    println!("{}",post.summarize());
    println!("{}",weibo.summarize());
}

特征定义与实现的位置(孤儿规则)

如果你想要为类型 A 实现特征 T,那么 A 或者 T 至少有一个是在当前作用域中定义的!

你无法在当前作用域中,为 String 类型实现 Display 特征,因为它们俩都定义在标准库中,其定义所在的位置都不在当前作用域,跟你半毛钱关系都没有,看看就行了。

该规则被称为孤儿规则,可以确保其它人编写的代码不会破坏你的代码,也确保了你不会莫名其妙就破坏了风马牛不相及的代码。

默认实现

rust
pub trait Summary {
    fn summarize(&self) -> String {
        String::from("(Read more...)")
    }
}

默认实现的方法,这样其它类型无需再实现该方法,或者也可以选择重载该方法:

rust
impl Summary for Post {}

impl Summary for Weibo {
    fn summarize(&self) -> String {
        format!("{}发表了微博{}", self.username, self.content)
    }
}


    println!("{}",post.summarize());
    println!("{}",weibo.summarize());

默认实现允许调用相同特征中的其他方法,哪怕这些方法没有默认实现。如此,特征可以提供很多有用的功能而只需要实现指定的一小部分内容。例如,我们可以定义 Summary 特征,使其具有一个需要实现的 summarize_author 方法,然后定义一个 summarize 方法,此方法的默认实现调用 summarize_author 方法:

rust



pub trait Summary {
    fn summarize_author(&self) -> String;

    fn summarize(&self) -> String {
        format!("(Read more from {}...)", self.summarize_author())
    }
}
// 为了使用 Summary,只需要实现 summarize_author 方法即可:


impl Summary for Weibo {
    fn summarize_author(&self) -> String {
        format!("@{}", self.username)
    }
}
println!("1 new weibo: {}", weibo.summarize());

weibo.summarize() 会先调用 Summary 特征默认实现的 summarize 方法,通过该方法进而调用 Weibo 为 Summary 实现的 summarize_author 方法,最终输出:1 new weibo: (Read more from @horse_ebooks...)。

使用特征作为函数参数

先定义一个函数,使用特征作为函数参数:

rust

pub fn notify(item: &impl Summary) {
    // 可以传递 Post 或 Weibo 的实例来作为参数,而其它类如 String 或者 i32 的类型则不能用做该函数的参数,因为它们没有实现 Summary 特征。
    println!("Breaking news! {}", item.summarize());
}

impl Summary,只能说想出这个类型的人真的是起名鬼才,简直太贴切了,顾名思义,它的意思是 实现了Summary特征 的 item 参数。

特征约束(trait bound)

虽然 impl Trait 这种语法非常好理解,但是实际上它只是一个语法糖:

rust
pub fn notify<T: Summary>(item: &T) {
    println!("Breaking news! {}", item.summarize());
}
// 也可以有多个参数
pub fn notify(item1: &impl Summary, item2: &impl Summary) {}

// 不同的参数类型
pub fn notify<T: Summary>(item1: &T, item2: &T) {}

// 泛型类型 T 说明了 item1 和 item2 必须拥有同样的类型,同时 T: Summary 说明了 T 必须实现 Summary 特征。

多重约束

除了单个约束条件,我们还可以指定多个约束条件,例如除了让参数实现 Summary 特征外,还可以让参数实现 Display 特征以控制它的格式化输出:

rust
pub fn notify(item: &(impl Summary + Display)) {}

pub fn notify<T: Summary + Display>(item: &T) {}

通过这两个特征,就可以使用 item.summarize 方法,以及通过 println!("{}", item) 来格式化输出 item。

Where 约束

当特征约束变得很多时,函数的签名将变得很复杂:

rust
fn some_function<T: Display + Clone, U: Clone + Debug>(t: &T, u: &U) -> i32 {}

fn some_function<T, U>(t: &T, u: &U) -> i32
    where T: Display + Clone,
          U: Clone + Debug
{}

使用特征约束有条件地实现方法或特征

特征约束,可以让我们在指定类型 + 指定特征的条件下去实现方法,例如:

rust
use std::fmt::Display;

struct Pair<T> {
    x: T,
    y: T,
}

impl<T> Pair<T> {
    fn new(x: T, y: T) -> Self {
        Self {
            x,
            y,
        }
    }
}

impl<T: Display + PartialOrd> Pair<T> {
    fn cmp_display(&self) {
        if self.x >= self.y {
            println!("The largest member is x = {}", self.x);
        } else {
            println!("The largest member is y = {}", self.y);
        }
    }
}

cmp_display 方法,并不是所有的 Pair<T> 结构体对象都可以拥有,只有 T 同时实现了 Display + PartialOrdPair<T> 才可以拥有此方法。 该函数可读性会更好,因为泛型参数、参数、返回值都在一起,可以快速的阅读,同时每个泛型参数的特征也在新的代码行中通过特征约束进行了约束。

也可以有条件地实现特征, 例如,标准库为任何实现了 Display 特征的类型实现了 ToString 特征:

rust
impl<T: Display> ToString for T {
    // --snip--
}

函数返回中的 impl Trait

可以通过 impl Trait 来说明一个函数返回了一个类型,该类型实现了某个特征:

rust
fn returns_summarizable() -> impl Summary {
    Weibo {
        username: String::from("sunface"),
        content: String::from(
            "m1 max太厉害了,电脑再也不会卡",
        )
    }
}

因为 Weibo 实现了 Summary,因此这里可以用它来作为返回值。要注意的是,虽然我们知道这里是一个 Weibo 类型,但是对于 returns_summarizable 的调用者而言,他只知道返回了一个实现了 Summary 特征的对象,但是并不知道返回了一个 Weibo 类型。

这种 impl Trait 形式的返回值,在一种场景下非常非常有用,那就是返回的真实类型非常复杂,你不知道该怎么声明时(毕竟 Rust 要求你必须标出所有的类型),此时就可以用 impl Trait 的方式简单返回。例如,闭包和迭代器就是很复杂,只有编译器才知道那玩意的真实类型,如果让你写出来它们的具体类型,估计内心有一万只草泥马奔腾,好在你可以用 impl Iterator 来告诉调用者,返回了一个迭代器,因为所有迭代器都会实现 Iterator 特征。

但是这种返回值方式有一个很大的限制:只能有一个具体的类型,例如:

rust
fn returns_summarizable(switch: bool) -> impl Summary {
    if switch {
        Post {
            title: String::from(
                "Penguins win the Stanley Cup Championship!",
            ),
            author: String::from("Iceburgh"),
            content: String::from(
                "The Pittsburgh Penguins once again are the best \
                 hockey team in the NHL.",
            ),
        }
    } else {
        Weibo {
            username: String::from("horse_ebooks"),
            content: String::from(
                "of course, as you probably already know, people",
            ),
        }
    }
}

通过 derive 派生特征

调用方法需要引入特征

在一些场景中,使用 as 关键字做类型转换会有比较大的限制,因为你想要在类型转换上拥有完全的控制,例如处理转换错误,那么你将需要 TryInto:

rust
use std::convert::TryInto;

fn main() {
  let a: i32 = 10;
  let b: u16 = 100;

  let b_ = b.try_into()
            .unwrap();

  if a < b_ {
    println!("Ten is less than one hundred.");
  }
}

如果你要使用一个特征的方法,那么你需要将该特征引入当前的作用域中,我们在上面用到了 try_into 方法,因此需要引入对应的特征。

但是 Rust 又提供了一个非常便利的办法,即把最常用的标准库中的特征通过 std::prelude 模块提前引入到当前作用域中,其中包括了 std::convert::TryInto,你可以尝试删除第一行的代码 use ...,看看是否会报错。

特征对象

在介绍特征对象之前,先来为之前的 UI 组件定义一个特征:

rust
pub struct Button {
    pub width: u32,
    pub height: u32,
    pub label: String,
}

impl Draw for Button {
    fn draw(&self) {
        // 绘制按钮的代码
    }
}

struct SelectBox {
    width: u32,
    height: u32,
    options: Vec<String>,
}

impl Draw for SelectBox {
    fn draw(&self) {
        // 绘制SelectBox的代码
    }
}

此时,还需要一个动态数组来存储这些 UI 对象:

rust
pub struct Screen {
    pub components: Vec<?>,
}

注意到上面代码中的 ? 吗?它的意思是:我们应该填入什么类型,可以说就之前学过的内容里,你找不到哪个类型可以填入这里,但是因为 Button 和 SelectBox 都实现了 Draw 特征,那我们是不是可以把 Draw 特征的对象作为类型,填入到数组中呢?答案是肯定的。

特征对象指向实现了 Draw 特征的类型的实例,也就是指向了 Button 或者 SelectBox 的实例,这种映射关系是存储在一张表中,可以在运行时通过特征对象找到具体调用的类型方法。

可以通过 & 引用或者 Box<T> 智能指针的方式来创建特征对象。

rust
trait Draw {
    fn draw(&self) -> String;
}

impl Draw for u8 {
    fn draw(&self) -> String {
        format!("u8: {}", *self)
    }
}

impl Draw for f64 {
    fn draw(&self) -> String {
        format!("f64: {}", *self)
    }
}

// 若 T 实现了 Draw 特征, 则调用该函数时传入的 Box<T> 可以被隐式转换成函数参数签名中的 Box<dyn Draw>
fn draw1(x: Box<dyn Draw>) {
    // 由于实现了 Deref 特征,Box 智能指针会自动解引用为它所包裹的值,然后调用该值对应的类型上定义的 `draw` 方法
    x.draw();
}

fn draw2(x: &dyn Draw) {
    x.draw();
}

fn main() {
    let x = 1.1f64;
    // do_something(&x);
    let y = 8u8;

    // x 和 y 的类型 T 都实现了 `Draw` 特征,因为 Box<T> 可以在函数调用时隐式地被转换为特征对象 Box<dyn Draw> 
    // 基于 x 的值创建一个 Box<f64> 类型的智能指针,指针指向的数据被放置在了堆上
    draw1(Box::new(x));
    // 基于 y 的值创建一个 Box<u8> 类型的智能指针
    draw1(Box::new(y));
    draw2(&x);
    draw2(&y);
}

上面代码,有几个非常重要的点:

  • draw1 函数的参数是 Box<dyn Draw> 形式的特征对象,该特征对象是通过 Box::new(x) 的方式创建的
  • draw2 函数的参数是 &dyn Draw 形式的特征对象,该特征对象是通过 &x 的方式创建的
  • dyn 关键字只用在特征对象的类型声明上,在创建时无需使用 dyn

因此,可以使用特征对象来代表泛型或具体的类型。

rust

pub struct Screen {
    pub components: Vec<Box<dyn Draw>>,
}

继续来完善之前的 UI 组件代码,首先来实现 Screen:

rust
pub struct Screen {
    pub components: Vec<Box<dyn Draw>>,
}

其中存储了一个动态数组,里面元素的类型是 Draw 特征对象:Box<dyn Draw>,任何实现了 Draw 特征的类型,都可以存放其中。

再来为 Screen 定义 run 方法,用于将列表中的 UI 组件渲染在屏幕上:

rust
impl Screen {
    pub fn run(&self) {
        for component in self.components.iter() {
            component.draw();
        }
    }
}

至此,我们就完成了之前的目标:在列表中存储多种不同类型的实例,然后将它们使用同一个方法逐一渲染在屏幕上!

再来看看,如果通过泛型实现,会如何:

rust

pub struct Screen<T: Draw> {
    pub components: Vec<T>,
}

impl<T> Screen<T>
    where T: Draw {
    pub fn run(&self) {
        for component in self.components.iter() {
            component.draw();
        }
    }
}

上面的 Screen 的列表中,存储了类型为 T 的元素,然后在 Screen 中使用特征约束让 T 实现了 Draw 特征,进而可以调用 draw 方法。

但是这种写法限制了 Screen 实例的 Vec<T> 中的每个元素必须是 Button 类型或者全是 SelectBox 类型。如果只需要同质(相同类型)集合,更倾向于这种写法:使用泛型和 特征约束,因为实现更清晰,且性能更好(特征对象,需要在运行时从 vtable 动态查找需要调用的方法)。

现在来运行渲染下咱们精心设计的 UI 组件列表:

rust
fn main() {
    let screen = Screen {
        components: vec![
            Box::new(SelectBox {
                width: 75,
                height: 10,
                options: vec![
                    String::from("Yes"),
                    String::from("Maybe"),
                    String::from("No")
                ],
            }),
            Box::new(Button {
                width: 50,
                height: 10,
                label: String::from("OK"),
            }),
        ],
    };

    screen.run();
}

上面使用 Box::new(T) 的方式来创建了两个 Box<dyn Draw> 特征对象,如果以后还需要增加一个 UI 组件,那么让该组件实现 Draw 特征,则可以很轻松的将其渲染在屏幕上,甚至用户可以引入我们的库作为三方库,然后在自己的库中为自己的类型实现 Draw 特征,然后进行渲染。

在动态类型语言中,有一个很重要的概念:鸭子类型(duck typing),简单来说,就是只关心值长啥样,而不关心它实际是什么。当一个东西走起来像鸭子,叫起来像鸭子,那么它就是一只鸭子,就算它实际上是一个奥特曼,也不重要,我们就当它是鸭子。

在上例中,Screen 在 run 的时候,我们并不需要知道各个组件的具体类型是什么。它也不检查组件到底是 Button 还是 SelectBox 的实例,只要它实现了 Draw 特征,就能通过 Box::new 包装成 Box<dyn Draw> 特征对象,然后被渲染在屏幕上。

使用特征对象和 Rust 类型系统来进行类似鸭子类型操作的优势是,无需在运行时检查一个值是否实现了特定方法或者担心在调用时因为值没有实现方法而产生错误。如果值没有实现特征对象所需的特征, 那么 Rust 根本就不会编译这些代码:

rust
fn main() {
    let screen = Screen {
        components: vec![
            Box::new(String::from("Hi")),
        ],
    };

    screen.run();
}

因为 String 类型没有实现 Draw 特征,编译器直接就会报错,不会让上述代码运行。如果想要 String 类型被渲染在屏幕上,那么只需要为其实现 Draw 特征即可,非常容易。

注意 dyn 不能单独作为特征对象的定义,例如下面的代码编译器会报错,原因是特征对象可以是任意实现了某个特征的类型,编译器在编译期不知道该类型的大小,不同的类型大小是不同的。

&dynBox<dyn> 在编译期都是已知大小,所以可以用作特征对象的定义。

特征对象的动态分发

编译器会为每一个泛型参数对应的具体类型生成一份代码,这种方式是静态分发(static dispatch),因为是在编译期完成的,对于运行期性能完全没有任何影响。

与静态分发相对应的是动态分发(dynamic dispatch),在这种情况下,直到运行时,才能确定需要调用什么方法。之前代码中的关键字 dyn 正是在强调这一“动态”的特点。

当使用特征对象时,Rust 必须使用动态分发。编译器无法知晓所有可能用于特征对象代码的类型,所以它也不知道应该调用哪个类型的哪个方法实现。为此,Rust 在运行时使用特征对象中的指针来知晓需要调用哪个方法。动态分发也阻止编译器有选择的内联方法代码,这会相应的禁用一些优化。

下面这张图很好的解释了静态分发 Box<T> 和动态分发 Box<dyn Trait> 的区别:

特征对象的动态分发

  • 特征对象大小不固定:这是因为,对于特征 Draw,类型 Button 可以实现特征 Draw,类型 SelectBox 也可以实现特征 Draw,因此特征没有固定大小
  • 几乎总是使用特征对象的引用方式,如 &dyn DrawBox<dyn Draw>
    • 虽然特征对象没有固定大小,但它的引用类型的大小是固定的,它由两个指针组成(ptr 和 vptr),因此占用两个指针大小
    • 一个指针 ptr 指向实现了特征 Draw 的具体类型的实例,也就是当作特征 Draw 来用的类型的实例,比如类型 Button 的实例、类型 SelectBox 的实例
    • 另一个指针 vptr 指向一个虚表 vtable,vtable 中保存了类型 Button 或类型 SelectBox 的实例对于可以调用的实现于特征 Draw 的方法。当调用方法时,直接从 vtable 中找到方法并调用。之所以要使用一个 vtable 来保存各实例的方法,是因为实现了特征 Draw 的类型有多种,这些类型拥有的方法各不相同,当将这些类型的实例都当作特征 Draw 来使用时(此时,它们全都看作是特征 Draw 类型的实例),有必要区分这些实例各自有哪些方法可调用

简而言之,当类型 Button 实现了特征 Draw 时,类型 Button 的实例对象 btn 可以当作特征 Draw 的特征对象类型来使用,btn 中保存了作为特征对象的数据指针(指向类型 Button 的实例数据)和行为指针(指向 vtable)。

一定要注意,此时的 btn 是 Draw 的特征对象的实例,而不再是具体类型 Button 的实例,而且 btn 的 vtable 只包含了实现自特征 Draw 的那些方法(比如 draw),因此 btn 只能调用实现于特征 Draw 的 draw 方法,而不能调用类型 Button 本身实现的方法和类型 Button 实现于其他特征的方法。也就是说,btn 是哪个特征对象的实例,它的 vtable 中就包含了该特征的方法。

Self 与 self

在 Rust 中,有两个self,一个指代当前的实例对象,一个指代特征或者方法类型的别名:

rust
trait Draw {
    fn draw(&self) -> Self;
}

#[derive(Clone)]
struct Button;
impl Draw for Button {
    fn draw(&self) -> Self {
        return self.clone()
    }
}

fn main() {
    let button = Button;
    let newb = button.draw();
}

上述代码中,self指代的就是当前的实例对象,也就是 button.draw() 中的 button 实例,Self 则指代的是 Button 类型。

当理解了 self 与 Self 的区别后,我们再来看看何为对象安全。

特征对象的限制

不是所有特征都能拥有特征对象,只有对象安全的特征才行。当一个特征的所有方法都有如下属性时,它的对象才是安全的:

  • 方法的返回类型不能是 Self
  • 方法没有任何泛型参数 对象安全对于特征对象是必须的,因为一旦有了特征对象,就不再需要知道实现该特征的具体类型是什么了。如果特征方法返回了具体的 Self 类型,但是特征对象忘记了其真正的类型,那这个 Self 就非常尴尬,因为没人知道它是谁了。但是对于泛型类型参数来说,当使用特征时其会放入具体的类型参数:此具体类型变成了实现该特征的类型的一部分。而当使用特征对象时其具体类型被抹去了,故而无从得知放入泛型参数类型到底是什么。

深入特征(尚未理解)